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Abstract
We study electron hopping in thin metal–insulator–metal structures which
involves two defect centres with a strong electron–phonon coupling. We
calculate the dependences of the current, J , on voltage, V , and temperature,
T , and show that they are consistent with those observed in molecular
monolayers of fatty acids. We analyse in detail an unusual, near-exponential
temperature dependence of the current: J (T ) ∝ exp(T/T0) observed at
T � 50 K in eicosanoic acid (C20) organic monolayers sandwiched between
Pt electrodes, where the parameter T0 increases with the bias voltage. We show
that at relatively high voltages the two-defect small-polaron hopping results in
N-shape current–voltage characteristics which were observed in some organic
molecular monolayers.

The technological drive to produce low-cost active and passive devices for electronic circuitry
has attracted much interest to molecular monolayers [1–3]. It is natural to expect that the
current through an organic monolayer sandwiched between two metal electrodes is dominated
by temperature-independent direct electron tunnelling [4]. In particular, this behaviour was
reported for fatty-acid monolayers long ago (see, e.g. [5]), as well as in recent publications [6].
Meanwhile, certain samples of the same fatty-acid monolayers reveal a pronounced temperature
dependence of the current [7, 8], which is inconsistent with the direct tunnelling mechanism.
Moreover, a large body of research has addressed complex conductivity phenomena, such as
rectification [9], negative-differential resistance [10], and switching [11] in various organic
dielectric monolayers. This diverse and sometimes controversial behaviour of organic
monolayers has been the subject of recent discussions [2]. The monolayers are known to
contain a certain density of defects, both those intrinsic to the monolayer formation [12] and
those induced by subsequent deposition of a top metal electrode [2, 13, 14].
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We present here a theoretical model in which deviations from simple tunnelling are
attributed to conduction via such defects, by way of two-impurity hopping. We will
demonstrate that, in particular, the model is consistent with the anomalous near-exponential
temperature dependence observed in recent experiments [8]. Several previous descriptions
of impurity conduction in thin dielectric layers have addressed resonant tunnelling via one
impurity state [15–17] and electron hopping via two and more impurity states [18]. However,
none of these models predict a strong temperature dependence. In each case, the current J
through the monolayers of thickness d is proportional to exp(−2d/a) for direct tunnelling [4–
6], and to exp(−d/a) and to exp(−2d/3a) for resonant tunnelling via one [15–17] or two
impurities [18], respectively. (Here a is a typical decay of the electron wavefunction determined
by the height of the metal–dielectric interface barrier, a � 1 Å.) Thus, even a small number
of molecular chains with two impurities can dominate the conductivity of monolayers when
d � a. The chains with three and more impurities can play a significant role only at extremely
high concentrations of defects.

In this paper, we study electron transport through a thin dielectric layer which involves
two-defect hopping. Contrary to [18], we consider small-polaron hopping via defects with
a strong electron–phonon coupling. We show that the anomalous dependences of current on
temperature and voltage, observed in different fatty-acid monolayers [7, 8], are consistent
with this mechanism. We systematically compare the results of our calculations with our
experimental data on electron transport through organic molecular monolayers of eicosanoic
acid (C20 with d = 2.8 nm) with Pt contacts. The experiment is reported in detail in [8].

Let us consider a pair of defect centres 1 and 2 with strong electron–phonon coupling
separated by a distance r greater than the localization length a. We will assume that only one
electron is localized at this pair. In the representation of the creation and annihilation operators
a+

i and ai of an electron at the sites i = 1 or 2, the Hamiltonian of such a system can be written
in the form [19–21]

H =
∑
i=1,2

(
niεi +

P2
i

2M
+

1

2
Mω2q2

i − niλqi

)
+ He, (1)

where ni = a+
i ai is the electron occupation number of a site i such that ni = 0 or 1 and

n1 + n2 = 1. In equation (1), the first term represents the ‘bare’ energy of an electron localized
at a site i , which incorporates its possible shift under the applied voltage V ; ω is the frequency
of a local phonon corresponding to the soft mode qi interacting with the localized electron;
Pi = −ih̄∂/∂qi is the momentum that is conjugate to the configuration coordinate qi so that the
second term is the operator of the kinetic energy of the centre while the third term represents its
elastic energy; M is the mass of the centre. The last term under the summation sign describes
the electron–phonon interaction which is proportional to the local lattice distortion with λ
being the electron–phonon coupling constant. Electron capture leads to a local reconstruction
of the centre, resulting in the shift of the equilibrium value of the configuration coordinate
from 0 to 2qc and in lowering the electron energy from E0 to E0 = E0 − Ip by a quantity
Ip = λ2/2Mω2, called the polaron shift. (Here qc = λ/2Mω2.) The last term in equation (1)
is the electron transfer Hamiltonian which is responsible for electron hopping between two
sites:

He = −t (r)
(
a+

1 a2 + a+
2 a1

)
, (2)

where t (r) = t0 exp(−r/a) is the hopping (tunnelling) integral.
The electron transport through the thin insulator, which involves two impurity localized

states, consists of three steps:

(i) the jump of a free electron from the left metal contact to a first impurity,
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(ii) the jump of the electron from the first impurity to a second one, and
(iii) the jump of the electron to the right contact.

The rate of (ii) is ν1,2 ∝ |t (r12)|2 ∝ exp(−2r12/a) and the rates of (i) and (iii) are νe ∝
exp(−2xi/a), where r12 is the distance between the impurities and xi is the distance between
a centre and the nearest contact [16, 18]. From here it follows that when d � a, the current is
determined by the optimum impurity configuration in a chain with xi � r12 = x1,2 � d/3 [18],
where x is the direction along the chain (perpendicular to the contacts). The fact that both
ν1,2 and νe are exponentially small allows us to employ the non-adiabatic approximation to
describe small-polaron hopping [21]. We assume that the concentration of the impurities is
high, N � 1018 cm−3, and that the Fermi level F is actually pinned by the impurity band [19].
The potential barrier height � at the metal–dielectric (semiconductor) interface, as a rule,
fluctuates strongly [22] from one molecular chain to another and so does the localized electron
energy level E0 which follows �. (Within one chain, the fluctuations of E0 are considered
small.) As a result, in the vicinity of F the density of the electron states can be treated as
constant, g(E = F) � g0, in a wide energy interval δ � Ip � 0.1eV . This assumption
explains the absence of a threshold in the current–voltage characteristics. It also means that
the concentration of the impurities involved in the electron transport increases with voltage as
p � g0eV0|V/V0|α, V0 = 1 V and α � 1. Then the current can be written as

J ∝ p[ f1(1 − f2)ν1,2 − f2(1 − f1)ν2,1], (3)

where f1 and f2 are the populations of the first and second impurity centres, respectively. In
the case under consideration, f1 � 1 and f2 � 0 (see [18] and further discussion), i.e. the
current J ∝ pν1,2 is determined by inter-impurity hopping.

In the two-site polaron model described by the Hamiltonian (1), non-adiabatic inter-
impurity hopping is a transition between the initial (with the electron at the left site: n1 = 1,
n2 = 0) and the final (with the electron at the right site: n1 = 0, n2 = 1) states of the system.
The potential energies of these states (terms), U1(q1, q2) and U2(q1, q2), are different for they
correspond to different electronic configurations of the pair. (This is similar, for instance, to two
different potential-energy curves corresponding to the bonding and anti-bonding configurations
of H +

2 -molecule [23].) The potential energies U1(q1, q2) and U2(q1, q2) are paraboloids of
revolutions that have their minima U10 = E0 and U20 = E0 − eV12 + ε located at points
q1 = qc, q2 = 0 and q1 = 0, q2 = qc, respectively, where V12 = V x12/d is the voltage
bias between the centres and ε is the difference in their ‘bare’ ground state energies. The
minima are separated by a distance 2

√
2qc. If V12 = ε = 0, the minimum potential barrier

that separates the paraboloids, Ea = Ip/2, is located at a point q1 = q2 = qc/2. (This point
and the paraboloids’ minima belong to the same plane q1 + q2 = qc.) This minimum barrier
determines high-temperature small-polaron activation hopping between identical centres when
V1,2 → 0 [21]. Notice that the height of the activation barrier for the contact-to-impurity (i)
or impurity-to-contact (iii) hopping is equal to Ip/4, i.e. it is half that required for the inter-
impurity transition, Ea = Ip/2. Therefore, the rates of (i) and (iii) are much higher than that of
(ii) and they depend on T and V more weakly then ν1,2 [16, 17]. As a result, the populations
f1 � 1 and f2 � 0 as previously suggested. In the plane q1 + q2 = qc, the expressions for
potential energies of the initial and final terms can be rewritten as

U1(q) = 1
2 Mω2(q + q ′

c)
2 + E0 = Ea (z + 1) + E0, (4)

U2(q) = 1
2 Mω2(q − q ′

c)
2 + E0 + ε − eV1,2

= Ea (z − 1) + E0 + ε − eV1,2, (5)

where q ′
c = √

2qc, q = q1 −q2 and z = q/q ′
c. As a result, both the small-polaron hopping [21]

and capture of the electrons by the impurity centres with strong electron–phonon coupling [24]
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Figure 1. Potential energies U1(q) and U2(q) of the impurity centres as functions of a generalized
coordinate q (z = q/q ′

c) describing the distortion of their local environment for a voltage
eV1,2 = mh̄ω + ε (m = 5). The U ′

2(q) curve corresponds to V12 > Vm = 2Ip/e.

can be treated as essentially one-dimension problems. Since x1,2 � a, the hopping rate
ν1,2 � ω so that after the hopping event the left centre that accepts the electron has enough
time to relax before hopping to the right centre occurs. At low temperatures, the electron that
is localized at the ground state of the left impurity can jump to the mth excited state of the
right impurity at a voltage difference such that eV1,2 = mh̄ω + ε (figure 1).

If He = 0, the wavefunctions of the centres |i,m〉 can be written as products of the
wavefunctions of light electrons, ψi (r, q), and those of heavy impurity centres, φm(q ± q ′

c),
in the ground (m = 0) or in an excited state (m � 1). The equilibrium states of the centres
correspond to q = ±q ′

c = ±λ/√2Mω2, respectively. The wavefunctions φm(q) are those of
the harmonic oscillator [23]:

φ0(q) ∝ exp

(
− q2

2a2
1

)
, φm(q) = 1√

2mm!
φ0(q)Hm

(
q

a1

)
, (6)

where a1 = (h̄/Mω)1/2 and Hm(ξ) are the Hermite polynomials. By treating the electron
transfer Hamiltonian He in equation (1) as a perturbation, the hopping rate can be calculated
by means of the ‘golden rule’ [21, 23]

ν12 (r) = 2π

h̄

∑
m,m′

∣∣〈2,m |He| 1,m ′〉∣∣2
δ
(
eV12 − ε − (

m − m ′) h̄ω
)
, (7)

where He(r) is given by equation (2). Assuming that the scatter, ε, in the ground state energies
of nearby centres has the dispersion γ � h̄ω � 0.01eV , one can derive from equation (7) that
the low-temperature current

J ∝ pν12 ∝ p

[
exp

(
−2x1,2

a

)]
D1,2 exp

[
− (eV1,2 − mh̄ω)2

2γ 2

]
, (8)

D1,2 = |〈φ0(q + q ′
c)|φm(q − q ′

c)〉|2 =
[

1

m!

(
2Ip

h̄ω

)m

− 1

]
exp

(
−2Ip

h̄ω

)
. (9)
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Figure 2. Temperature dependences of current through an organic molecular monolayer of
eicosanoic acid (C20) for different voltage biases. The experimental data are shown by the
points and theoretical results, calculated by means of equations (13)–(16) for Ip = 0.33 eV and
h̄ω = 0.052 eV, are presented by the continuous curves. For all these curves, J0 = 2100 A and
α = 1 with the exception of the upper curve (V = 0.5 V) for which α = 1.15.

Here the first exponential factor in equation (8) originates from the electron transfer
integral t (x12), while the matrix element D1,2 describes tunnelling in the heavy-impurity
subsystem [21, 23], which is accompanied by a radical reconstruction of both the impurity
centres. D1,2 is exponentially small for the centres with strong electron–phononcoupling when
Ip � h̄ω. Therefore, at low temperatures and biases hopping via two centres is suppressed,
so that current will be determined either by direct tunnelling or by hopping via one impurity
which requires tunnelling through half as small barrier. However, the tunnel transparency
of the inter-impurity hopping barrier increases with bias, V1,2 = V/3, and the two-impurity
channel becomes dominant at relatively large biases. When V is large, m = eV/3h̄ω can be
treated as a continuous function of V . Then, from equation (8), by using the Stirling formula
we find that for low temperatures

J (V ) = J0

∣∣∣∣ V

V0

∣∣∣∣
α [

exp

(
−2d

3a
− 2Ip

h̄ω

)](
exp

{
eV

3h̄ω

[
1 + ln

(
6Ip

eV

)]}
− 1

)
. (10)

The two-impurity channel also dominates the conductivity at elevated temperatures
because it involves tunnelling via excited impurity states with m � 1. To analyse the high-
temperature current we employ the quasiclassical method [23] developed for the description
of electron capture and ionization of deep impurities [24] and for small-polaron hopping [21].
In this case,

D1,2 ∝
∫ ∞

0
dE exp

[
− E

kT
− 2S(E)

]
, (11)

where exp(−E/kT ) is the Boltzmann factor and S(q, E) is the imaginary part of the
dimensionless action of a ‘classical particle’ moving with the energy E in the inverted potentials
U1(q) and U2(q) [23], given by equations (4) and (5), respectively. The ‘particle’ moves in
the inverted potential U1(q) from the left turning point zE = qE/q ′

c = −1 +
√

2E/Ip to the
point of the intersection of the potentials, zi = eV1,2/2Ip (figure 2). Then it moves in the



5710 V V Osipov et al

inverted potential U2(q) from point zi to the right turning point z′
E = +1 − √

2(E + eV1,2)/Ip.
Therefore,

S(E) = q ′
c

√
M

h̄

[∫ zi

zE

dz
√

Ip(z + 1)2 − 2E +
∫ z′

E

zi

dz
√

Ip(z − 1)2 − 2(E + eV1,2)

]
, (12)

given eV12 � ε � 0.01eV . Calculating the integrals in equation (12) yields

S(E) = Ip

2h̄ω

{
2H (y, v)− y ln

(
[H (y, v) + (1 − v)]√

y

)

− (y + 4v) ln

(
[H (y, v) + (1 + v)]√

(y + 4v)

)}
, (13)

where H (y, v) = √
(1 − v)2 − y, y = 2E/Ip and v = eV1,2/2Ip. The function f (E) =

E/kT + 2S(E) in (11) has a sharp maximum at the saddle-point with the energy

Es = Ip

sinh2 b

[
cosh b

√
1 + v2 sinh2 b − 1 − v sinh2 b

]
, (14)

where b = h̄ω/2kT . Calculating the integral over E in equation (11) by means of the saddle-
point technique gives

D1,2(V , T ) ∝ exp

[
− Es

kT
− 2S(Es)

]
. (15)

Thus, according to equation (8)

J (V , T ) = J0|V/V0|α[exp(−2d/3a)]D1,2(V , T ). (16)

At low temperatures, kT � h̄ω, the value Es � 0 and equations (16), (15),and (13) are reduced
to equation (10). In the other limiting case of V → 0, but at relatively high temperatures, from
equations (13) to (16) it follows that

J (V , T ) ∝ V |V |α exp

[
−2Ip

h̄ω
tanh

(
h̄ω

4kT

)]
. (17)

Since Ip = 2Ea, equation (17) coincides with the formula obtained by Holstein for small-
polaron band hopping [21]. One can use the following interpolation for equation (17):

ln J (V → 0, T ) ∝
(

T

T 0
0

)
− 2.3

(
Ip

h̄ω

)
, T 0

0 = (h̄ω)2

3Ip
(18)

valid for a negligibly small bias with an accuracy of 5% in the temperature interval 0.2h̄ω �
kT � h̄ω/2. From figure 2 it can be seen that equations (13)–(16) describe the experimental
J (T, V ) data fairly well. At low temperatures (T � 50 K), the measured current through the
structure depends very weakly on temperature T , while for T > 50 K the current grows
exponentially with T , J ∝ exp(T/T0), where parameter T0 increases from T0 � 35 K
to T0 � 100 K when V increases from 20 to 500 mV. Theoretically, for finite biases V ,
parameter T 0

0 in equation (18) should be substituted with T0(V ) which increases with voltage
as T0(V ) � T 0

0 (1 + 4eV/3Ip), contrary to the Holstein results [21] where it is constant.
Discrepancies between theory and experiment are observed only for low temperatures and
voltages, when, as noted above, the two-impurity channel is not dominant. Note that at
V12 = Vm = 2Ip/e the parabolic terms U1(q) and U2(q) intersect at a point q = −q ′

c where
U1(q) has a minimum, i.e. the activation barrier between the terms vanishes. However, the
barrier appears again when V12 exceeds Vm (the curve U ′

2(q) in figure 1). Therefore the
current can actually decrease with the increase of voltage V12 = V/3 > Vm , i.e. the current–
voltage characteristics are N-shaped. Such N-shaped behaviour has been observed in alkyl
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monolayers [10]. For the C20 samples reported here, the threshold voltage, Vt � 2 V, exceeds
the breakdown voltage so that the negative resistance, if present, could not be observed.

We have shown that

(i) hopping via two impurity centres with strong electron–phonon coupling can dominate the
current through thin insulators at relatively high voltages and/or temperatures, and results
in unique dependences of the current on temperature and voltage;

(ii) this mechanism is consistent with the near-exponential temperature dependence of the
current observed experimentally in some samples of fatty-acid monolayers. This may be
due to the presence of metallic atoms or structural defects within the organic film.

Acknowledgments

The authors are grateful to A S Alexandrov, A M Bratkovsky, V N Smelyanskiy, and
A G Petukhov for critique and numerous fruitful discussions. Partial funding for this work was
provided by DARPA. One of us (MF) acknowledges support from the NSF grant No DMR-
0071823.

References

[1] Hebard A F, Rosseinsky M J, Haddon R C, Murphy D W, Glarum S H, Palstra T T M, Ramirez A P and
Kortan A R 1991 Nature 350 600

Sikes H D, Smalley J F, Dudek S P, Cook A R, Newton M D, Chidsey C E D and Feldberg S W 2001 Science
291 1519

[2] Service R F 2001 Science 284 2442
Service R F 2003 Science 302 559

[3] Salomon A, Cahen D, Lindsay S, Tomfohr J, Engelkes V B and Frisbie C D 2003 Adv. Mater. 15 1881
[4] Simmons J G 1963 J. Appl. Phys. 34 1793

Simmons J G 1971 J. Phys. D: Appl. Phys. 4 613
[5] Polymeropoulos E E 1977 J. Appl. Phys. 48 2404
[6] Wang W, Lee T and Reed M A 2003 Phys. Rev. B 68 035416
[7] Polymeropoulos E E and Sagiv J 1978 J. Chem. Phys. 69 1836
[8] Stewart D R, Ohlberg D A A, Beck P A, Lau C N and Williams R S 2004 Phys. Rev. Lett.

submitted (LD8981)
[9] Zhou C, Deshpande M R, Reed M A, Jones L II and Tour J M 1997 Appl. Phys. Lett. 71 611

Lenfant S, Krzeminski C, Delerue C, Allan G and Vuillaume D 2003 Nano Lett. 3 741
[10] Chen J, Wang W, Reed M A, Rawlett A M, Price D W and Tour J M 2000 Appl. Phys. Lett. 77 1224

Chen J, Reed M A, Rawlett A M and Tour J M 1999 Science 286 1550
[11] Collier C P, Wong E W, Belohradsky M, Raymo F M, Stoddart J F, Kuekes P J, Williams R S and

Heath J R 1999 Science 285 391
Collier C P, Mattersteig G, Wong E W, Luo Y, Beverly K, Sampaio J, Raymo F M, Stoddart J F and

Heath J R 2000 Science 289 1172
[12] Ulman A 1996 Chem. Rev. 96 1533
[13] Fisher G L, Walker A V, Hooper A E, Tighe T B, Bahnck K B, Skriba H T, Reinard M D, Haynie B C,

Opila R L, Winograd N and Allara D L 2002 J. Am. Chem. Soc. 124 5528
Jung D R, Czanderna A W and Herdt G C 1996 J. Vac. Sci. Technol. A 14 1779

[14] Tredgold R H and Winter C S 1981 J. Phys. D: Appl. Phys. 14 L185
Couch N R, Montgomery C M and Jones R 1986 Thin Solid Films 135 173

[15] Stone A D and Lee P A 1985 Phys. Rev. Lett. 54 1196
Larkin A I and Matveev K A 1987 Sov. Phys.—JETP 66 580

[16] Glazman L I and Shekhter R I 1988 Sov. Phys.—JETP 67 580
Wingreen N S, Jacobsen K W and Wilkins J W 1988 Phys. Rev. Lett. 61 1396
Wingreen N S, Jacobsen K W and Wilkins J W 1989 Phys. Rev. B 40 11834

[17] Alexandrov A S and Bratkovsky A M 2003 Phys. Rev. B 67 235312
Alexandrov A S, Bratkovsky A M and Williams R S 2003 Phys. Rev. B 67 075301



5712 V V Osipov et al

[18] Glazman L I and Matveev K A 1987 Sov. Phys.—JETP 66 1276
Xu Y, Ephron D and Beasley M R 1995 Phys. Rev. B 52 2843

[19] Mott N and Davis E 1979 Electron Processes in Non-Crystalline Materials (Oxford: Clarendon)
[20] Bottger H and Bryksin V V 1985 Hopping Conduction in Solid (Berlin: Academie)
[21] Holstein T 1978 Phil. Mag. B 37 49

Holstein T 1959 Ann. Phys. 8 325
Holstein T 1959 Ann. Phys. 8 343
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